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LETTER TO THE EDITOR

Folding of the triangular lattice in the face-centred cubic
lattice with quenched random spontaneous curvature
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Kanagawa 228, Japan
‡ CEA, Service de Physique Théorique de Saclay, F-91191 Gif sur Yvette Cedex, France

Received 29 August 1997

Abstract. We study the folding of the regular two-dimensional triangular lattice embedded in
the regular three-dimensional face centered cubic lattice, in the presence of quenched random
spontaneous curvature. We consider two types of quenched randomness: (1) a ‘physical’
randomness arising from a prior random folding of the lattice, creating a preferred spontaneous
curvature on the bonds; (2) a simple randomness where the spontaneous curvature is chosen
at random independently on each bond. We study the folding transitions of the two models
within the hexagon approximation of the cluster variation method. Depending on the type of
randomness, the system shows different behaviours. We finally discuss a Hopfield-like model as
an extension of the physical randomness problem to account for the case where several different
configurations are stored in the prior prefolding process.

The statistical properties of polymerized membranes have been extensively studied in the
past few years [1, 2]. Some particular attention was paid to the role of quenched disorder in
the elasticity of the membrane, with mainly two motivations. The first one is to understand
the mechanism of the ‘wrinkling’ transition of partially polymerized lipid vesicles [3].
Such membranes undergo a reversible phase transition from a high-temperature soft phase
with strong fluctuations to a low-temperature rigid and highly wrinkled phase. A second
motivation is, at a macroscopic level, the study of the statistical properties of randomly
crumpled paper or, more generally, randomly crumpled elastic sheets [4, 5]. In a random
crumpling process, creases are created, which generate random spontaneous curvature.
When iterated, the random crumpling processes can moreover cause frustration, and the
crumpled paper may then have many equally probable configurations of minimal energy, a
usual characteristics of random spin systems.

Here we study a simple system of a two-dimensional polymerized object with quenched
disorder. As a toy model, we consider the problem offolding of the regular two-dimensional
triangular lattice in the presence of random spontaneous curvature. Models of folding have
been introduced in [6] and studied in [7, 8]. Originally, the study was restricted toplanar
folding, i.e folding in a two-dimensional embedding space. A more general discrete folding
model with a three-dimensional embedding space was then introduced and studied in [9–11],
describing the folding of the triangular lattice in the regular three-dimensional face-centred
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cubic (FCC) lattice. The role of disorder in theplanar folding problem was analyzed
by the authors and Di Francesco in [12]. There, disorder was introduced in the form
of a quenched random bending rigidity. Here we would like to complete our study by
considering the folding in the three-dimensional FCC lattice in the presence ofquenched
random spontaneous curvature.

Before we proceed to our study, let us recall the results of [12] for the planar folding
problem with random bending rigidity. There, we were interested in modelling the
randomness arising from a prior irreversible ‘crumpling’ of the lattice. Such a crumpling
results in a marking of the lattice bonds with quenched creases on which folds are favoured.
The system can then be described by a Mattis-like model [13] with Hamiltonian

HMattis = −K
∑

n.n.(ij)

τiτjσiσj (1)

where the variablesσi = ±1 describe the (up or down) normal to the trianglei in the folded
configuration and n.n.(ij) means summation over all nearest neighbour pairs. The disorder
variablesτi = ±1, accounting for the prior irreversible marking, define a random bending
rigidity Kij = Kτiτj , and are ‘frozen’ according to a specified probability distribution
[12]. For the variablesσ to represent actual folded configurations of the lattice, the six
neighbouring spins on an elementary hexagon of the lattice,σi(i = 1, 2, . . . ,6), must
satisfy the ‘physical’ constraints [6–8]:

∑6
i=1 σi = 0 mod 3. This condition, in particular,

prevents one from absorbing the disorder in a simple change ofσi into σiτi . Similarly, if the
corresponding disorder variablesτi(i = 1, 2, . . . ,6) arise from a prefolding process, they
should also obey the physical rule

∑6
i=1 τi = 0 mod 3. This condition on theτ variables

is essential for the system to develop a largeK ‘frozen phase’ where the prior irreversible
folded shape is recovered. If theτ variables are free±1 variables which do not satisfy
the physical constraint above, the system becomes frustrated and the lattice remains in a
disordered phase.

We now would like to extend these results to the case of the three-dimensional FCC
folding problem. A folding of the triangular lattice in the FCC lattice is simply a mapping
sending each vertex of the triangular lattice onto a vertex of the FCC lattice, with the
requirement that neighbouring vertices on the triangular lattice remain nearest neighbours
in the FCC lattice [9, 10], i.e. belong to the same triangular face. The FCC lattice is indeed
made of octahedra and tetrahedra in contact by their triangular faces. Elementary triangles
of the triangular lattice are thus sent onto elementary triangular faces of the FCC lattice. In
the folded configuration, two adjacent triangles can form some relative angleθ , with one
of the four following values:

(i) θ = 180◦, no fold: the triangles are side by side;
(ii) θ = 0◦, complete fold: the triangles are on top of each other;
(iii) θ = arccos(1/3) ∼ 71◦, fold with acute angle: the two triangles lie on two adjacent

faces of the same tetrahedron in the FCC lattice; and
(iv) θ = arccos(−1/3) ∼ 109◦, fold with obtuse angle: the triangles lie on two adjacent

faces of the same octahedron in the FCC lattice.
It was shown in [9] that these four types of folds can be understood as the superposition

of the domain walls of twoZ2 variablesσ = ±1 and z = ±1 living on the faces of
the triangular lattice. The relative values1σ ≡ σ2σ1 and1z = z1z2 for two neighbouring
triangles indicate which type of fold they form, with the correspondence displayed in table 1.

In order to describe an actual allowed folded state, theσ andz variables are subject to
two basic folding rules involving the valuesσi andzi (i = 1, . . . ,6) on the six neighbouring
triangles forming an elementary hexagon in the lattice. For each hexagon, the variablesσ
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Table 1. The relative folding state of two neighbouring triangles according to the relative values
1σ and1z.

1σ 1z θ Angle

1 1 180◦ No fold
−1 1 0◦ Complete fold

1 −1 71◦ Acute field
−1 −1 109◦ Obtuse fold

must satisfy the following first folding rule:

6∑
i=1

σi = 0 mod 3. (2)

This rule is identical to the rule of planar folding [7] although its interpretation here is
slightly different [9, 10]. A second basic folding rule involves both thez andσ variables
and reads∏
i∈I (c)

zizi+1 = 1 for c = 0, 1, 2 I (c) =
{
i :

i∑
k=1

σk = c mod 3

}
. (3)

With the ‘physical’ constraints (2) and (3), one finds exactly 96 possible hexagonal
configurations for the six triangles surrounding any of the vertices of the triangular lattice.
Note that the planar folding problem can be recovered by freezing thez variable to
zi = +1 globally for all triangles. One is then left with exactly 11 possible hexagonal
configurations.

In the absence of disorder, the folding energy is simplyEpure= −K cos(θ) per lattice
bond, withK the bending rigidity parameter. In terms of the variablesσ1, σ2 andz1, z2 of
the two triangles forming the fold, the folding energy simply reads

Epure= −K
3
σ1σ2(1+ 2z1z2). (4)

The total folding energy is the sum of all elementary folding energies for all the bonds of
the triangular lattice.

Disorder can be put in the model by introducing quenched disorder variablesτi andwi
describing the prefolded state created by the irreversible crumpling process. The domain
walls for the variablesτ andw encode the four possible types of created creases with angle
ψ = 180◦, 0◦, 71◦ or 109◦ according to a table similar to table 1. Of course, in order to
describe an actual prefolded state, theτ andw variables are subject to two local folding
rules similar to (2) and (3). The presence of random creases directly leads to a random
spontaneous curvature in the system, encoded in the angleψ of the crease. Given this
angle, the energy becomes minimum when the angleθ of the fold is such thatθ = ψ . We
shall thus consider the following bending energy:

E = −K cos(θ − ψ) (5)

whereK measures the strength of this bending energy and where the quenched random
variable ψ describes the quenched random spontaneous curvature in the system. As
mentioned above, the variablesθ andψ take four values, leading to 16 possible fold/crease
configurations. We would like to express the energy (5) in terms of the spin variablesσi , zi ,
τi andwi (i = 1, 2) on the two neighbouring triangles on each side of the fold, as we did
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in (4) for the pure case without disorder. The relative values1σ ≡ σ1σ2 and1z ≡ z1z2,
on the one hand, and those of1τ ≡ τ1τ2 and1w ≡ w1w2, on the other, fix the anglesθ
andψ and thus the energy (5).

We can make use of the symmetryθ ↔ ψ in (5) (i.e. (1σ,1z)↔ (1τ,1w)) and of
the symmetry(θ, ψ)↔ (180◦ − θ, 180◦ −ψ) (i.e. (1σ,1τ)↔ −(1σ,1τ)) to ensure that
the bending energy has the twoindependentsymmetries1τ ↔ 1σ and1w↔ 1z, and is
even in(1σ +1τ)/2, leading to the general form (forZ2 variables)

E

K
= e + a (1z +1w)

2
+ b1(1σ1τ)+ b2(1z1w)+ c(1σ1τ)(1z +1w)

2
+d(1σ1τ)(1z1w) (6)

involving six constant coefficientse, a, b1, b2, c, d to be determined hereafter. These
coefficients are simply obtained from the values of the six independent (i.e. not related
by the above symmetries) pairs of folding and disorder configurations given in table 2.

Table 2. The folding and crease state of two neighbouring triangles and the corresponding
bending energy/K for the six independent configurations.

Fold configuration Disorder configuration Bending energy/K

No fold No crease −1
No fold Acute crease 1/3
No fold Complete crease 1
No fold Obtuse crease −1/3
Acute fold Acute crease −1
Acute fold Obtuse crease −7/9

From this table, we determine the bending energy to be

E = K

9

[
− 2+ 4

(1z +1w)
2

− (1σ1τ)− 2(1z1w)

−4(1σ1τ)
(1z +1w)

2
− 4(1σ1τ)(1z1w)

]
= − K

9
[1σ(1+ 21z)1τ(1+ 21w)+ 2(1−1z)(1−1w)]. (7)

The total bending energy is again the sum of all elementary folding energies for all links
of the triangular lattice. It is interesting to check several limiting cases of the above
formula. The pure folding problem, without disorder, can be recovered by constraining
the disorder variables according to1τ = 1w = 1. The bending energy (7) reduces to
E = −K1σ(1+ 21z)/3, i.e to equation (4). The case of planar folding with disorder
is obtained by setting1z = 1w = 1 in (7) and the bending energy reduces then to
E = −K1τ1σ , as in (1).

In addition to the bending energy (7), we also introduce an external fieldHr associated
with the variable(στ+wz), which is a rough measure of how close the folding configuration
(σ, z) is from the disorder configuration(τ, w). This definition of the external field is not
canonical and many other definitions are equally acceptable. The main motivation for
introducing this external field is technical, i.e. the necessity to first prepare a solution
with explicit broken symmetry to be able to eventually reach a solution with spontaneous
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symmetry breaking by tuningHr to zero. Our total Hamiltonian is thus given by

H = −K
9

∑
n.n.(ij)

[τiτj (1+ 2wiwj )σiσj (1+ 2zizj )+ 2(1− wiwj )(1− zizj )]

−Hr
∑
i

(σiτi + ziwi). (8)

To analyse the properties of the system, we will consider different order parameters. In
view of what we know about the pure system without disorder, it is useful to divide the
original triangular lattice into the two subsets A and B made of all triangles pointing up
and all triangles pointing down, respectively, in the original flat triangular lattice. This, in
particular, allows us to define ‘staggered’ average values. We will be interested primarily
in the four following average values:

SA ≡ 〈σ 〉A ZA ≡ 〈z〉A F1 ≡ 〈στ 〉 F2 ≡ 〈zw〉 (9)

where the brackets denote the average over the configurations at fixed disorder for an
arbitrary given triangle (taken, moreover, in the subset A when we add the index A to the
brackets) and the overline denotes the average over the quenched disorder. One has of
course−16 SA, ZA, F1, F2 6 1. Non-zero values of the ‘frozen’ order parametersF1 and
F2 indicate that the membrane is trapped in the configuration given by the disorder variables
τ andw. The reason why we restrict ourselves to the subset A inSA andZA is that, for
the ‘pure’ system, that is the model without disorder, and atK = 0, it was established that
the lattice is found in a phase whereSA = −SB ∼ 0.874 560 andZA = ZB = 0. This can
be interpreted as a strong preference for the lattice to wrap on octahedra in the FCC lattice.
In this phase, clearly the full average valueS ≡ (SA + SB)/2 = 0 is not a good quantity
and the correct order parameter isSst ≡ (SA − SB)/2, or more simplySA itself.

We now come to the question of the precise form of the probability distribution for
the quenched disorder variablesτ andw. As has been discussed previously, these disorder
variables should obey the two folding constraints in order to correspond to some prior
folding of the lattice. As in our previous work in [12], we can take advantage of the
solution of the pure system and simply assume that the disorder distribution is described by
a particular equilibrium distribution of this pure system. Since there is no physical reason
to introduce an energy scale in the distribution of the disorder variables and because we
want to treat as equiprobable all prefolded configurations, the natural choice is to take the
distribution of the pure system atK = 0. As we just mentioned, the triangular lattice is
then in a ‘octahedrally’ folded phase. The disorder configuration will thus also have the
same nature, i.e.τst = 0.874 560. This means that the disorder configuration is dominated
by obtuse and complete creases. We will refer to the disordered model with this particular
probability distribution as model 1. For comparison, we will also study a model without the
physical constraints on theτ andw variables, i.e a case were the two random variables take
±1 values with equal probability, independently on each triangle. All the(2× 2)6 = 4096
hexagonal disorder configurations are then possible and equiprobable. We shall refer to this
second model as model 2 and will compare its behaviour with that of model 1.

To analyse the properties of both models 1 and 2, we rely on the same method we
used in [12] for the planar case, i.e. the cluster variation method (CVM) in its hexagonal
approximation. The CVM uses a variational principle on the free energy of the system
together with a suitable truncation of the cumulant expansion of the entropy at the level
of some maximal clusters (here the hexagons) [14–16]. It is applicable to the statistics of
both pure systems without disorder and to systems with quenched random disorder. In this
case, it allows one in particular to evaluate average values such as (9). This method has
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been first used for the planar and FCC folding problems in [17]. Although it is only an
approximation since the entropy is evaluated from a truncation of its cumulant expansion,
it has been shown in the most simple cases of folding problems that its results compare
extremely well with exact predictions [17]. For more complex cases where no exact results
exist, we still believe that this method allows for reliable and accurate predictions, as far
as the nature of the phases and of the transitions are concerned. We refer to our previous
work [12] for a detailed description of this method and its implementation for disordered
systems.

We now present the results of our CVM analysis. Our main result is, as for the planar
system, the dependence of the existence of a frozen phaseFi 6= 0 (i = 1, 2) on the type
of disorder. In the case of model 1, a discontinuous transition occurs atK = KF3 ∼ 0.44
from a low K octahedrally folded phase to a largeK frozen phase. Model 2 does not
develop such a phase and the lattice is always found in the octahedrally folded state (this
was checked up toK = 10.0). We have also looked at the effect of the external fieldHr
alone. In this case, both systems show a discontinuous transition to a partially frozen phase
0 < Fi < 1 with, however, very different resulting states. In the frozen phase of model 1,
the Fi almost saturate to 1 and the lattice is thus completely trapped in the configuration
specified by the disorder variables. In the case of model 2, the values ofFi are much
smaller, which means that the degree of freezing is far from complete. Such a different
character comes from the frustration appearing in the system for model 2, a result similar
to what we found in the planar folding model [12]. The external field tries to put the lattice
configuration into a disorder configuration which is, in general, not accessible due to the
folding constraints on theσ andz variables. In other words, there is not a unique ground
state for arbitrary disorder variables.

In figures 1 and 2, we show the behaviour of the free energy and the different order
parametersSA, ZA, F1,C ≡ F1 − SAτA andF2 for both model 1 and model 2 as a function
of the bending energyK and the external fieldHr . We displayF1,C instead ofF1, because
in the case of model 1,F1 takes non-zero values even at(K,Hr) = (0, 0). Indeed, when
K = Hr = 0, the disorder variablesτ andw are decoupled from the physical degrees of
freedomσ andz. From the definition ofF1, its value is then simply given by the product
of the valueSA of the pure system atK = 0 and the quantityτA, both equal to 0.874 560,
leading toF1 = (0.874 560)2 ∼ 0.765. This non-zero value is subtracted if we use the
‘connected part’F1,C instead.

In the case of model 1, by increasing the bending rigidityK, the systems undergoes a
phase transition from the octahedrally folded phase (SA 6= 0,ZA = 0, F1,C 6= 0 andF2 = 0)
to the frozen phase (SA ∼ τA = 0.874 560,ZA = 0, F1,C ∼ 1.0− (0.874 560)2 ∼ 0.235,
F2 ∼ 1). The values ofFi saturate to 1, meaning that the system is almost completely
trapped in the configuration specified by the disorder variables. The external field also
induces a phase transition. In this case, a weak field already creates a non-zero value of
F2 and the lattice is thus in a weakly frozen phase. A discontinuous transition occurs to a
highly frozen phase at with strong freezingFi ∼ 1 (i = 1, 2).

In the case of model 2, increasing the bending rigidity does not give rise to a frozen
phase (in the rangeK < 10.0 at least where we performed our analysis). The octahedral
orderSA 6= 0 persists for allK and the triangular lattice remains in the octahedrally folded
phase. With the external fieldHr , the octahedral order disappears abruptly and a partially
frozen phaseFi 6= 0 (i = 1, 2) appears atHr,C = 0.18. However, the values ofF1 andF2

are small in this phase compared with the largeHr frozen phase of model 1.
In the present work and in our previous work [12], we have studied triangular lattice

folding models with random bending rigidity and random spontaneous curvature. These
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Figure 1. The free energy and the order parametersSA (broken),ZA (full), F1,C (broken) and
F2 (full) as a function of the bending energyK and the external fieldHr . These results are for
model 1, i.e. with disorder variables satisfying physical constraints.

Figure 2. The free energy and the order parametersSA (broken),ZA (full), F1,C = F1 (broken)
andF2 (full) as a function of the bending energyK and the external fieldHr . These results are
for model 2, i.e. with disorder variables completely random.
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models can be seen as toy models for crumpled paper in the sense that they combine the
effect of disorder and of geometrical metric constraints on a geometrical two-dimensional
object. We have in mind the situation where the paper is crumpled only once and the system
thus does not have frustration and can recover this crumpled state. A natural question is now
what happens if the paper is crumpled several times. In this case, we expect that the lattice
should store several creases configurations. Let us discuss now how this can be implemented
in our model. For simplicity we return to theplanar folding problem with random bending
rigidity (see equation (1)). We can imagine that the lattice, afterp crumpling processes,
storesp different configurations, which we denote byτµi (µ = 1, . . . , p). Then one possible
choice is the following bending energy, written by analogy with the Hopfield model [18, 19]:

Kij = K

p

p∑
µ=1

τ
µ

i τ
µ

j . (10)

We note, however, two differences with the usual Hopfield model. In our problem, the spin
variablesσi and the disorder random variablesτµi correspond to folded configurations of
the lattice, and must satisfy the planar folding constraint (equation (2)). Moreover, in the
Hopfield model, the interaction is long-ranged(

∑
(i,j)), while in our model, it is simply

short-ranged(
∑

n.n.(ij)).
The choice (10) for the bending energy is, however, somewhat unsatisfactory. To see

why, we consider an elementary hexagon which tries to store the two disorder configurations
of figure 3. With the definition of equation (10), the bending rigidityKij at the creases
becomes zero (see figure 3(a)), a result which is somewhat unrealistic. We would instead
expect that, if one folds the hexagon as in figure 3, the bending rigidity becomes negative
at all the creases and remains positive where there is no crease (see figure 3(b)). A more
natural choice for the bending energy is then

Kij = K min[τµi τ
µ

j (µ = 1, . . . , p)]. (11)

This choice corresponds to a complete irreversibility of the process of marking creases.

Figure 3. An elementary hexagon with two different memoriesτ1 andτ2. We show on the right-
hand side the corresponding values ofKij according to (a) equation (10) and (b) equation (11).

With such a disorder, we now find for the case of figure 3 seven ground states in
competition (figure 4). This situation is exactly similar to the case of unphysical disorder,
where theτ variables do not satisfy the folding constraint. In our previous work, we have
shown that the strong frustration caused by such an unphysical disorder prevents the system
from having a frozen phase at largeK. Based on this result, we could conclude that, in the
presence of many different stored configurations, the system remains always disordered. On
the other hand, as we increase the number of irreversible crumplings, the number of creases
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Figure 4. An elementary hexagon with unphysical disorder and the corresponding lowest energy
configurations satisfying the folding constraint.

becomes large and the system becomes almost identical to apure model with negative
bending rigidity. Such a pure system is known to be at largeK in a so-called ‘piled-up’
ordered phase. We can assume that one develops such an order if the numberp of stored
configurations exceeds a critical valuepc2. Finally, from the properties of the Hopfield
model, one can also imagine the system to be in the so-called spin-glass phase.

From the above discussion, we can propose the following conjecture on the statistical
properties of the above model atK = ∞, which is of particular importance because
crumpled paper can be considered as an infinite elastic constant limitK →∞ (or T = 0)
of the lattice system. The triangular lattice withp stored configurations could be in the
retrieval phase for very smallp < pc1, where the system can almost store and retrievep

patterns. Forpc1 < p < pc2, the system would be in a spin-glass phase or in a disordered
phase. Finally, forp > pc2, the system would be in the piled-up phase. The values of
pc1 andpc2 are expected to be very small, because the interaction is short ranged and the
probability that each elementary hexagon has two or three creases is very high, even with
one stored configuration.

Finally, we also expect that the many crumpled configurations which are caused by
successive crumplings of the paper are not independent from one another and we can
suppose that they look quite similar. This weakens the frustration, which might keep the
paper in the retrieval phase for largerp, i.e. increase the value ofpc1 and pc2. In fact,
it was also reported experimentally [5] that the paper has a good memory of the previous
crumpled configuration. Even in the retrieval phase, the energy landscape in the phase
space of the system can be very complex. It is this complex nature which might appear
as the universal power law of the noise emitted from the crumpled elastic sheets [5]. The
thermodynamics of the above model are left for a future study. In addition, more realistic
bending energy could be considered. To conclude, we can say that the problem of multiple
stored configurations is still very open.

We thank Dr M Bowick and Dr Y Ozeki for useful discussions.
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